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Space-time nonlocal model for heat conduction
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We consider a space-time nonlocal heat conduction model with balance laws in the form of integral
equations (so-called strong nonlocality). The model identifies two internal parameters—the time 7 and
the space & scales of nonlocality. In going from the strong nonlocal model to its approximations of vari-
ous accuracy in the form of partial differential equations, which correspond to weak nonlocality, we in-
troduce two limiting relations between 7 and h as 7,h —0. In the diffusion limit, which preserves the
thermal diffusivity @ =h?/7=const as 7,h —0, the strong nonlocal model gives a hierarchy of parabolic
equations with an infinite speed of heat waves. In the wave limit, which preserves the ratio
v =h /r=const as 7,h —O0, a hierarchy of hyperbolic equations has been obtained. The hyperbolic equa-
tions imply a finite speed of heat waves. These results suggest that for diffusion (low-k) and propagative
(high-k) regimes distinct models are responsible for the space-time evolution of the temperature and heat
flux. The connection with phonon hydrodynamic theory and applications to other problems are dis-
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cussed.

PACS number(s): 44.10.+1, 05.70.Ln

I. INTRODUCTION

Classical thermodynamics leads to a heat conduction
equation of parabolic type, which is local, both in time
and space. A local theory is adequate when the mean
free path and the mean free time are relatively short.
Such a theory is based on the local balance equation of
energy, the Gibbs equation, and the local balance equa-
tion of entropy, which for a rigid isotropic solid take the
form

dU(x,t)

fadad L LU S (1
[ Vq(x,t), )
dS(x,t)=T"'dU(x,t) , (2)
piis—fi’t"—"+v1<x,t)=o(x,t) : (3)

where U is the specific internal energy per unit mass, p is
the mass density, q is the heat flux, S is the specific entro-
Py per unit mass, T is the temperature, J is the entropy
flux, and o is the entropy production per unit volume and
time. Undoubtedly the local theory has worked well in
many applications. However, the local theory is unable
to explain some sufficiently rapid (high-frequency) phe-
nomena [1-20]. When one is interested in high-
frequency phonon hydrodynamics at low temperatures
[8-12], second sound in liquid helium and in certain
dielectric crystals [9], high-frequency perturbations in po-
lymeric fluids [13], laser annealing of silicon and germani-
um [14], shock waves [15], the glass transition of high
viscosity liquids [16], heat conduction in gases of mole-
cules with internal degrees of freedom [3,17], ultrafast
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heat transport in thin gold films under femstosecond laser
irradiation [18], or high-speed traveling waves in excit-
able media [5,19], the space-time nonlocal effects should
be taken into account. In these situations the mean free
path and/or the mean free time of excitations, i.e., inter-
nal scales, are comparable with the characteristic space-
time scales of the process. The purpose of this paper is to
formulate space-time nonlocal balance laws in the in-
tegral form and then, working in a way similar to that of
the classical theory, obtain heat transfer equations. We
also discuss the connection with phonon hydrodynamic
theory and applications to other problems.

II. SPACE-TIME NONLOCAL MODEL

Equations (1)-(3) can be cast in the space-time nonlo-
cal form

_ 1 t+7
plUK+1)=Ux0]=1 [T qx0dwdr , @
S(x,t+1)—S(x,0)=T [U(x,t+7)—U(x,0)], (5

1 t+7
pIS(x 1+ =S+~ [T x,)dwat

=ftt+ffyo(x,t)dv dt, (6

where 7 is the time scale of nonlocality, and ¥ ~h3 and
w~h? are the volume and surface, corresponding to the
space scale of nonlocality, A. To avoid undue mathemati-
cal complications let us consider the one-dimensional
case. Then Eq. (4) reduces to

plU(x,t+71)—Ul(x,t)]
= —E%[q(x +ht+yr)—g(x—ht+y7)];

here the coefficient 0 <y < 1 appeared due to the integra-
tion over time. Introduction of this equation into (5)
yields
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Here the first large square bracket on the right hand side
of Eq. (7) is the entropy flux and the second large square
bracket is the nonlocal entropy production, which ac-
cording to the second law is positive definite. To ensure
the positive character of the entropy production in the
balance equation (7) one should assume

%[q(x +ht +yT)+q(x —ht +y7)]

___Ho

3 43
[, BT,

ox 3! 3x? ‘ ®

%[q(x +ht+yr)—q(x —h,t +y7))

—_ K
=3

h* 3T

W,
2 9x?

4! 9x*

: } ;0 (9)
here py>0, and p; >0.
Introduction of (9) into (4) yields the nonlocal heat
conduction equation,

aT | 7 T
_+,___+ P
P T 2 9t? ]
R R Y- S B,
2T | 2 3x? 4 9x*

Here we take into account that u =cT, with ¢ the specific
heat per unit mass. Expansion of the left hand side of eq.
(8) into a Taylor series gives the evolution equation for
heat flux,

2 A2
q+,},7§9_+!}_§.i+

at 2 Ox?
Hoh AT |, k3 3T
=— A4+ ... | (1
2772 | ox 3! 3x? (b

Both the nonlocal heat conduction equation (10) and non-
local heat flux equation (11) contain an infinite number of
terms with two small parameters 7 and h. To obtain
equations with a finite number of terms one must specify
the relation between 7 and h as 7,h —0 [5-7].

A. Diffusion law

For diffusionlike processes we introduce the finite value
of the thermal diffusivity a =h?2/7:
lim h%/r=a =const . (12)
7.h—0
In such a case in the first-order approximation Egs. (10)

and (11) reduce to the (classical) parabolic heat conduc-
tion equation and Fourier law, respectively:

dT . 3T o
Cp*é‘;—)ugz* , (131
q=~k%» (14)

where A=pga /2T?=p,a /4T? is the thermal conductivi-
ty. Equations (13) and (14) are local ones, in both time
and space.

The second-order approximations to Egs. (10) and (11)
are

3T 7 O*T | _. | d*T | h? 9*T (15
ol oo |1 TA S T e I (15)
t 2 9t ax 12 9
BV RS 7 A K G o Y
Ty at 2 9x? dx 6 ax3

These equations are nonlocal in both time [the second
terms on the left hand side of (15) and (16)] and space [the
last term on the left hand side of (16) and the last terms
on the right hand side of (15) and (16)]. Note that classi-
cal local equations (13) and (14), nonlocal equations (15)
and (16), and the higher order approximations imply the
infinite speed for thermal signals (thermal waves). This
fact is in accordance with the diffusion relation between 7
and & (12). Equation (15) is like the equation deduced by
Chester [8] in his analysis of high-frequency phonon hy-
drodynamics at low temperature. Comparison between
(15) and the results of [8] clearly demonstrates that at low
temperatures in solids the scales of time-space nonlocality
7 and h are symbols for combinations of relaxation time
averages and speed average values [8],

T=(R*)(R/1x) ",
h*=60(S3)({(Sg*){R /mg YD) !
X({RIRT2)—(R?*r)(7.)),
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where 7p is a relaxation time for momentum-
nonconserving process (the umklapp processes in which
momentum is lost from the phonon system), 7y is a relax-
ation time for normal processes that preserve phonon
momentum, R=rg(rg+7y)" =y 417,
D =A/cp is the thermal diffusivity, s, is the speed aver-
age over the propagation of transverse and longitudinal
modes [8]. Using (13) one can rearrange (15) to the next
form,
2 2 a3 2

|24 T T _W &T_|_ T g

2 3t 12 3rox? ax?

which is just an equation of the Jeffrey’s type [9]. The
mixed derivative 37 /3t dx? arises also in the two-
temperature model [7,17] and in the random walk theory
with a ‘“‘swaying” behavior of a random walker [20].
Moreover, Eq. (18) can be obtained from a heat flux equa-
tion of the Guyer-Krumhansl type [10],which was de-
rived from the linearized Boltzmann equation for the
pure phonon field at low temperatures. Comparison be-
tween (18) and the results of [10] leads to the following
identifications:

T/2=71g, h*=Try1xC3%, (19)

where C, is the average (sound) speed of the phonons.
Thus, according to (17) and (19) the time scale of nonlo-
cality 7 may be identified at low temperatures in solids as
the characteristic time of the resistive collisions 7. The
square of the space scale of nonlocality, 42, is of the order
of hyhg, where hg =Cyrg and hy =C,7y are the mean
free paths of phonons. It should be noted that this pro-
cedure, i.e., rearranging Eq. (15) into the Jeffrey’s form
(18), can only be used for nonsteady processes. At the
steady state the Jeffrey’s equation reduces to the classical
local heat conduction equation 3?7 /dx2=0, but Eq. (15)
gives the nonlocal steady-state equation

*T | h? 3T

ax? + 12 x4 0. (20)
This equation, adapted to cylindrical coordinates, can be
used to study Poiseuille flow of phonons. But we consid-
er here another example of using Eq. (20). Our purpose is
to describe the temperature field in a very pure crystal
[11]. In this case the only scattering mechanisms are nor-
mal (momentum-conserving) phonon-phonon processes in
the bulk of the crystal and interaction of phonons with
external surfaces. Consider a one-dimensional thin slab
of thickness 2L >>h, with heat flowing along the x direc-
tion. The solution of (20) is

T(x)—Ty=—8T sinh(x /hq)sinh(L /h) ,

where hy=h /2V3, Ty=const, and 287 is the tempera-
ture difference between the walls so T(—L)=T,+8T
and T(+L)=T,—8T. This solution coincides with the
results obtained by Sussman and Thellung [11] using a
mean free time approximation for the phonon distribu-
tion function. It describes a situation where the tempera-
ture remains practically constant [ T (x)=~T,] in the bulk
of the crystal and changes abruptly in the vicinity of the
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surfaces x =t+L within a distance of the order of the
mean free path h,. In the bulk of the crystal, heat flow
may proceed by drift motion of phonons with no temper-
ature gradient. At the surface no drift motion is possible
because of the nonconservation of momentum and thus
the heat flux is due to the heat conduction process with a
temperature gradient. This example clearly demonstrates
the importance of the nonlocal effects when the charac-
teristic scale of the process under consideration is of the
order of the internal scale 4,. In the local limit L >>h
one has the temperature jumps +67 at the surfaces
x=x=L. The nonlocal effects smooth these discontinui-
ties and lead to continuous change of temperature within
a distance x ~h,. Similar phenomena which can also ex-
hibit space nonlocal effects in the vicinity of the walls are
the thermal conduction in polished single crystals of pure
silicon in the low-temperature boundary-scattering re-
gime [12] and the viscosity of polymeric fluids squeezed
in a microscopic size channel [13]. Other examples
where space nonlocality becomes prominent are laser-
annealing experiments on surface layers of silicon [14],
shock waves [15], high viscosity liquids near the glass
transition [16], and gases of molecules with internal de-
grees of freedom [17].

B. Wave law

For propagative (high-k) regimes, when one should
take into account the finite speed of thermal signals, we
introduce the “wave” relation between 7 and h [5-7]. It
means that the ratio v =h /7 remains finite when 7 and A
tend to zero;

lim A /7=v=const . @2n
h—0

For the “wave” limiting relation (21) the first-order ap-
proximation to Egs. (10) and (11) are

13T &@T_ ,&T

R 9 3  Tax?’ 22
1 9 aT

—q+2 =— 2=

e 1T g T TCPCT G (23)

here Cr=(pugw?/CpT?)1/? is the speed of thermal signals
(Thermal waves [5,9]). Equations (22) and (23) are the
well known telegraph equation and Maxwell-Cattaneo
equation, respectively [3-7,9]. They transmit waves of
temperature with finite speed C,. Experiments showing
heat waves (second sound) have been successfully carried
out at low temperatures in liquid helium and in certain
dielectric crystals [9]. Ultrafast heat transport, consistent
with wave propagation, has also been observed in thin
gold films under femtosecond laser irradiation [18].

In accordance with the wave relation (21), not only the
telegraph equation (22) but also the higher order approxi-
mations imply finite speed of heat waves.

III. CONCLUDING REMARKS

The results presented show the significance of nonlocal
effects in transport processes. They can be described by
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balance laws in the integral form, which correspond to
so-called strong nonlocality. These balance laws lead, un-
like in the classical local theory, to appearance of a natu-
ral internal characteristic length (space scale of nonlocali-
ty) and a characteristic time (relaxation time or time scale
of nonlocality). Strictly speaking, all physical phenomena
depend, to some extent, on these internal scales because
of the discrete (phonon, atomic, molecule, etc.) structure
and inertia properties of the matter. In order to obtain
evolution equations for the temperature and heat flux in
the form of partial differential equations, which corre-
spond to weak nonlocality, we introduce two distinct lim-
iting relations between the internal space-time scales h
and 7. For diffusionlike processes with a small charac-
teristic speed vy <Cy, we preserve thermal diffusivity
a=h?/r=const as 7,h —0. In such a case the strong
nonlocal model gives a set of partial differential equations
of parabolic type with an infinite speed of heat waves. If
the characteristic speed of the process v, is of the order
of C; (so-called propagative regimes), then we must
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preserve v=h/r=const as t,h—0. In this case the
strong nonlocal model leads to a set of partial differential
equations of hyperbolic type. A number of terms in these
sets depend on the order of approximation, but the type
(hyperbolic or parabolic) of evolution equations does not
depend on it. The type of these equations is determined
by the limiting relation between the internal space-time
scales.

These results suggest that for diffusion(low-k) and pro-
pagative (high-k) regimes distinct models are responsible
for the space-time evolution of the temperature and heat
flux. The implications of this idea may apply to other
problems. In fact, all iteration schemes of the kinetic
theory, including the Navier-Stokes theory, the
Chapman-Enskog method, and the Grad method, make
use of expansions in powers of small parameters—the
mean free time or the mean free path of a molecule. The
limiting relation, i.e., the basic invariant of the process,
balances the time and space nomnlocal effects in accor-
dance with the main properties of the process.
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